Archiv für den Monat April 2017

Abgesetzter Temperatursensor mit micro:bit radio

Micro:bit ist zwar BLE tauglich, doch unter Python reichen die Ressorcen für den BLE-Stack nicht aus und es bleibt die micro:bit radio Verbindung.

Zur abgesetzten Temperaturmessung kann ein micro:bit als Sensorknoten und eine weiterer als Empfängerknoten genutzt werden. Die Message des Sensors wir hier als Broadcast versendet.

Das Python-Programm des Sensors ist:

# Measuring chip temperature on micro:bit & output to radio
from microbit import *
import radio

# The radio won't work unless it's switched on.
radio.on()

while True:
 temp = temperature() - 3 # offset to ambient temperature
 display.scroll(str(temp)+" C")
 radio.send(str(temp))
 sleep(5000)

Das Python-Programm des Empfängers ist:

# Receiving chip temperature from a micro:bit sensor node & output to console
from microbit import *
import os
import radio

uart.init()
uart.write(os.uname().machine +" get chip temperature by radio connection\r\n")

# The radio won't work unless it's switched on.
radio.on()

while True:
 # Read any incoming messages.
 temp = radio.receive()
 display.scroll(str(temp)+" C")
 uart.write("micro:bit chip temperature = "+str(temp)+" C\r\n")
 sleep(1000)

 

 

Advertisements

BBC Micro:bit

Micro:bit ist ein für Ausbildungszwecke entwickelter Mikrocontroller mit Features, die diesen Controller auch für Prototypen-Entwicklungen u.a. interessant machen. Hier sind die Retails zu diesem Controller zu finden.

Die technischen Spezifikationen sind:

  • Nordic Semiconductor nRF51822 Bluetooth Low Energy & 2.4GHz Wireless SoC (32-bit ARM® Cortex™ M0 CPU mit 256kB Flash und 16kB RAM)
  • Bluetooth Smart Antenne
  • microUSB Anschluss (Programmdownload, Console)
  • LiPo-Anschluss
  • 25 LEDs, 2 Taster
  • 20 Pin Edge Connector
  • Accelerometer, Compass

Programmierbar in

  • JavaScript-Blocks-Editor (PXT)
  • microPython

MicroPython Programmbeispiel

# Measuring chip temperature on micro:bit & output to console
from microbit import *
import os

uart.init()
uart.write(os.uname().machine +" measuring chip temperature\r\n")

while True:
 temp = temperature()
 display.scroll(str(temp)+" C")
 uart.write("micro:bit chip temperature = "+str(temp)+" C\r\n")
 sleep(5000)

 

 

MAC Adresse als Node Id

In vernetzten Umgebungen ist es erforderlich, die einzelnen Knoten identifizieren zu können. Bei der Vernetzung über Ethernet oder WLAN hat man die MAC Adresse des jeweiligen Netzwerkadapters zur Verfügung. Netzwerkknoten, die über andere Medien vernetzt sind, verwenden häufig eine unverwechselbare Seriennummer.

Beim C.H.I.P. kann die Seriennr. folgendermaßen ermittelt werden:

cat /proc/cpuinfo | grep "Serial" |  awk '{print $3}'

Beim NodeMCU habe ich eine Client Id mit folgendem Aufruf erzeugt:

CLIENTID = "ESP8266-" ..  node.chipid()

Hat man eine solche Seriennr. auf dem betreffenden Chip nicht zur Verfügung, dann kann die MAC Adresse, wenn vorhanden, als Id verwendet werden.

Hierzu habe ich ein Shell Script getid.sh geschrieben:

#!/bin/bash

echo "Build Ident from MAC ID"
ID=`ifconfig | grep wlan`
echo -n "MAC ID = "
ID=`echo ${ID#*HWaddr }` # see https://goo.gl/WLR79p
echo $ID
ID=`echo $ID | /bin/sed 's/://g'`
echo -n "Ident = "
ID=`echo $((16#$ID))`
echo $ID

ID

 

 

C.H.I.P. als Sensor-Knoten

Wegen seiner Kompaktheit kann C.H.I.P.  dann sehr gut als Sensor-Knoten eingesetzt werden, wenn es nicht auf minimalen Stromverbrauch ankommt.

Für erste Tests habe ich mit dem Program chiplog.py  die CPU-Last, den verfügbaren Speicher und die Boardtemperatur abgefragt und über Thingspeak visualisiert. Ausserdem wird beim Überschreiten der Temperatur eine Push-Message versendet. Mit dem Programm stress habe ich die CPU-Last erhöht, um die Auswirkungen auf die Boardtemperatur zur verdeutlichen.

CPU_Load

Mem_avail

PMU_Temp

Um einen externen Sensor abfragen zu können, bedarf es nur noch weniger zusätzlicher Zeile Code, die für einen Temperatur- und Feuchtigkeitssensor SHT31 noch folgen.

Das Programm BatStatus.py zeigt den Status der Batterie in den ersten Minuten nach dem Anschliessen an den C.H.I.P.  Controller.

BatStatus

Die Programme chiplog.py und BatStatus.py sind auf Github abgelegt. Im Wiki sind Installationshinweise nach einem Flashen des Betriebssystems und dem erforderlichen Python-Setup aufgeführt.