Archiv der Kategorie: LoRa

Einfache LoRaWAN-Knoten für das IoT

Low Power Wide Area Network (LPWAN) steht als Oberbegriff für viele unterschiedliche Protokolle. Neben dem hier betrachteten LoRa stehen Sigfox, LTE-M, Weightless, Symphony Link und einige andere im Wettbewerb.

Im Gegensatz zu einigen anderen Protokollen ist der LoRa-Standard Open Source und nicht proprietär. Das ist ein Grund für das rasante Wachstum von LoRaWAN-Netzwerken über ganze Länder, beginnend in den Ballungszentren.

Im Kindle eBook mit dem Titel „Einfache LoRaWAN-Knoten für das IoT“ beschreibe ich, wie mit sehr einfachen Mitteln und zu niedrigen Kosten LoRaWAN-Sensorknoten ohne Lötarbeiten selbst entwickelt werden können, die ihre Daten dann an einen LoRaWAN-Server senden.

Im Bild sind die betreffenden LoRaWAN-Knoten zu sehen:Nodes-1

Vom LoRaWAN-Server sind die Daten abrufbar und in eine beliebige Anwendung integrierbar. The Things Network (TTN) stellt mit seinem dezentrale Open-Source-Netzwerk die erforderliche Infrastruktur bereit.

Die folgende Abbildung zeigt, wie durch eine Subscription des Topics elsys_nodes/devices/+/up/#  alle zum LoRaWAN-Server hochgeladenen Messages von in der Application elsys_nodes registrierten Devices vom MQTT-Client MQTTlens empfangen werden.

Abbildung 57

Zum aktuellen Zeitpunkt, das war der 15.09.2018 11:38:39, betrug die Temperatur 19.4 °C bei einer relativen Luftfeuchtigkeit vom 71%. Die Batteriespannung lag bei 3.532 V.

Ein andere Möglichkeit der weiteren Verarbeitung der über mittelten Daten besteht darin, dass beispielsweise ein MQTT-Client auf einem Linux-Device, wie z.B. Raspberry Pi, diesen MQTT-Topic abonniert und daraus weitere Informationen respektive Aktionen ableitet. Das könnte dann z.B. eingebunden in eine Website so aussehen:

Abbildung 58

Wer bislang mit einem Arduino erste Erfahrungen sammeln konnte, der ist bestens auf diese zukunftsträchtige Aufgabenstellung vorbereitet und kann erste praktische Erfahrungen im Internet of Things sammeln.

Die Quelltexte zu den behandelten LoRaWAN-Knoten sind auf Github abgelegt.

Link zum eBook: https://www.amazon.de/dp/B07HDP62K3

Eine Printausgabe folgt in Kürze.

Advertisements

Omega2 als LoRaWAN Node

Mit dem Code aus diesem Projekt  können Sie ein LoRa-Radio, wie den SX1276 oder SX1272 (oder einen Klone wie den HopeRF RFM95) mit dem Omeag2 verbinden und Daten über LoRa an das Things Network (TTN) senden.

Das Projekt beinhaltet eigentlich zwei Dinge:

  • Arduino-LMIC Port für den Omega2
  • Omega2 I2C Treiber für die NXP SC18IS602B I²C-SPI-Bridge

 

 

LoRaWAN für Maker und Entwickler

TTN

The Things Network (TTN) ist ein globales, offenes, freies und dezentrales Internet der Dinge (IoT). Indem das TTN eine Infrastruktur für das IoT bereitstellt, soll der Prozess der Innovationsförderung rund um das IoT unterstützt werden.

Das TTN ist ein Low Power Wide Area Network (LPWAN) auf Basis von LoRaWAN und Bluetooth LE. Der in der Zeitschrift DESIGN & ELEKTRONIK erschienene Beitrag verfolgt das Ziel, die Grundlagen zu LoRaWAN zu vermitteln und die durch das TTN gegebenen Möglichkeiten aufzuzeigen und zu nutzen.

DESIGN & ELEKTRONIK 06/2017, S. 8 – 13

TMP36 LoRa Node

architecture

Die aus einem Arduino Uno und Dragino LoRa Shield V1.2. aufgebaute TMP36 LoRa Node misst die Aussentemperatur und überträgt die Messdaten (drahtlos) an das im Inneren platzierte LoRa Gateway.

Über dieses Gateway ist die TMP36 LoRa Node  in das TTN LoRaWAN integriert. Das LoRa Gateway besteht aus einem Raspberry Pi 3 mit einem Dragino LoRa /GPS HAT.

Dieses einkanalige LoRa Gateway hat nicht die Möglichkeiten eines voll ausgebauten LoRa Gateways, trotzdem ist es für diese einfache Aufgabenstellung geeignet. Das TTN Gateway ist bestellt und wird erwartet.

Die gemessenen Daten werden vom LoRa Gateway via Internet an den TTN Server übertragen. Zugriff auf die Daten ist über die TTN Console möglich.

Um die Daten auch anderen Anwendungen zur verfügung zu stellen, kann auf diese via MQTT zugegriffen werden. Ich verwende Mosquitto auf einem anderen Raspberry Pi, um die Daten zu abonnieren und zur Visualisierung an den Thingspeak Server zu senden. In die Website ckuehnel.ch/TMP36_LoRa_Node.html habe ich diese Grafik eingebunden.

Die für dieses Anwendungsbeispiel verwendete Software ist auf  Github abgelegt.

LoRa Node sendet Messwerte

Als Grundlage für meine Experimente habe ich von Github das Dragino Programmbeispiel lora_shield_ttn.ino verwendet und mit einer Sensorerweiterung versehen. Zur Erfassung der Umgebungstemperatur habe ich einen Temperatursensor TMP36 mit A0, VCC und GND verbunden.

lora-node-tmp36

Auf die Angabe des Listings des Programms lora_shield_ttn_tempC.ino möchte ich an dieser Stelle aus Platzgründen verzichten und auf Github verweisen. Dort ist das Programm abgelegt und kann von da heruntergeladen werden. Damit sind alle Vorkehrungen für das Versenden der Sensordaten in das LoRaWAN getroffen und es ist nun am Gateway diese Daten auch zu empfangen. Der Consolen Output zeigt die Messages dieser LoRa Node.

lora_shield_ttn_tempc

Die vom TTN LoRa Server empfangenen Messages zeigen hier im Bild Temperaturwerte von 24,71 und 27,64 °C (letzteres nach Auflegen eines Fingers auf den TMP36).

Beim Auruf des TTN LoRa Servers ist etwas Geduld notwendig. Nur alle 10 Minuten wird eine Message vom Gateway gesendet. Historische Daten werden nicht angezeigt.

ttn4

Vom TTN Lora Server werde die Daten via MQTT bereitgestellt und können da mit einem MQTT Viewer (hier habe ich MQTTlens verwendet) dargestellt bzw. über Subscribe in eine Anwendung gezogen werden.

ttn5

 

LoRa Gateway aktiv…

Heute habe ich zu Testzwecken ein LoRa Gateway installiert. Im TTN Mapping (TheThingsNetwork) ist es als „CK LoRa Gateway“ markiert.

Ein LoRa Concentrator iC880A ist bei IMST bestellt, dann wird das Gateway LoRaWAN kompatibel.

ck-lora-gateway

In den nächsten Tagen bekommt die eingesetzte LoRa Node (Dragino Lora Shield & Arduino Uno) noch einen Temperatursensor, dessen Daten dann übermittelt werden. Es folgen später stromsparende Varianten auf Basis des  LoRa Transceiver RFM95W & Arduino Pro Mini, Raduino32 SX1272 und LoPy.