Archiv der Kategorie: Maker

Einfache LoRaWAN-Knoten für das IoT

Low Power Wide Area Network (LPWAN) steht als Oberbegriff für viele unterschiedliche Protokolle. Neben dem hier betrachteten LoRa stehen Sigfox, LTE-M, Weightless, Symphony Link und einige andere im Wettbewerb.

Im Gegensatz zu einigen anderen Protokollen ist der LoRa-Standard Open Source und nicht proprietär. Das ist ein Grund für das rasante Wachstum von LoRaWAN-Netzwerken über ganze Länder, beginnend in den Ballungszentren.

Im Kindle eBook mit dem Titel „Einfache LoRaWAN-Knoten für das IoT“ beschreibe ich, wie mit sehr einfachen Mitteln und zu niedrigen Kosten LoRaWAN-Sensorknoten ohne Lötarbeiten selbst entwickelt werden können, die ihre Daten dann an einen LoRaWAN-Server senden.

Im Bild sind die betreffenden LoRaWAN-Knoten zu sehen:Nodes-1

Vom LoRaWAN-Server sind die Daten abrufbar und in eine beliebige Anwendung integrierbar. The Things Network (TTN) stellt mit seinem dezentrale Open-Source-Netzwerk die erforderliche Infrastruktur bereit.

Die folgende Abbildung zeigt, wie durch eine Subscription des Topics elsys_nodes/devices/+/up/#  alle zum LoRaWAN-Server hochgeladenen Messages von in der Application elsys_nodes registrierten Devices vom MQTT-Client MQTTlens empfangen werden.

Abbildung 57

Zum aktuellen Zeitpunkt, das war der 15.09.2018 11:38:39, betrug die Temperatur 19.4 °C bei einer relativen Luftfeuchtigkeit vom 71%. Die Batteriespannung lag bei 3.532 V.

Ein andere Möglichkeit der weiteren Verarbeitung der über mittelten Daten besteht darin, dass beispielsweise ein MQTT-Client auf einem Linux-Device, wie z.B. Raspberry Pi, diesen MQTT-Topic abonniert und daraus weitere Informationen respektive Aktionen ableitet. Das könnte dann z.B. eingebunden in eine Website so aussehen:

Abbildung 58

Wer bislang mit einem Arduino erste Erfahrungen sammeln konnte, der ist bestens auf diese zukunftsträchtige Aufgabenstellung vorbereitet und kann erste praktische Erfahrungen im Internet of Things sammeln.

Die Quelltexte zu den behandelten LoRaWAN-Knoten sind auf Github abgelegt.

Link zum eBook: https://www.amazon.de/dp/B07HDP62K3

Eine Printausgabe folgt in Kürze.

Advertisements

Raspberry Pi 3 Model B vs. 3 B+

Hier ist ein interessanter Vergleich zwischen Raspberry Pi 3 Model B und Raspberry Pi 3 Model B +.

Fazit des Autors Andrew Back:
Leistungssteigerungen sind immer willkommen. Während es immer jemanden gibt, der auf der Suche nach zusätzlicher Rechenleistung oder grösserem Netzwerkdurchsatz ist, ist Power-over-Ethernet mit ziemlicher Sicherheit das heißeste Feature des Raspberry Pi 3 Model B +. Der Vorteil, ein Gerät mit Netzwerk und Stromversorgung über ein einziges Kabel betreiben zu können – und zwar ohne eine Unordnung von Netzteilen und Stromkabeln – ist nicht zu unterschätzen.

HiGrow-Sensor sorgt für das Wohl der Pflanzen

Für das optimale Gedeihen von Pflanzen sind die Bedingungen wie Temperatur, Luft- und Bodenfeuchtigkeit, Licht u.a.m. verantwortlich.

Kommerzielle Systeme von Kärcher, Gardena, Parrot u.a. ermitteln solche Größen und steuern damit beispielsweise die Bewässerung oder stellen die ermittelten Daten einer App auf dem Smartphone zur Verfügung.

Mit dem HiGrow-Sensor kann der Maker das Thema selbst in die Hand nehmen. Der HiGrow-Sensor nutzt einen DHT11 zur Messung von Lufttemperatur und -Luftfeuchte. Die Feuchte des Bodens wird kapazitiv gemessen, da diese Variante weniger störungsanfällig als die resistive Methode ist. Außerdem wird die Helligkeit erfasst. Als CPU kommt eine ESP32-Wroom von Espressif zum Einsatz, der  in der Arduino IDE programmiert werden kann. Softwareunterstützung findet man auf Github unter https://github.com/lucafabbri/HiGrow-Arduino-Esp. In den nächsten Tagen werde ich an dieser Stelle ein Programmbeispiel zeigen, welches die ermittelten Werte über MQTT an einen MQTT-Broker übermittelt und von da bezogen werden können.

Der HiGrow-Sensor wird von Banggood zum Preis von unter € 15 angeboten.

 

 

ThingPulse gegründet

In der Maker-Szene bekannt sind Daniel “Squix” Eichhorn und Marcel “frightanic” Stör schon seit längerem.

Daniel ist in der ESP8266-Arduino-Community eine bekannte und respektierte Persönlichkeit. Er verkauft IoT-Kits und hat seit 2015 DIY-Projekte mit beeindruckender Geschwindigkeit realisiert.

Marcel ist seit Sommer 2015 einer von mehreren NodeMCU-Maintainers. NodeMCU ist eine Lua-Firmware für den ESP8266 / ESP32 WiFi SoC. Er hat auch einige Tools für die NodeMCU-Community beigesteuert: NodeMCU Cloud Builder, Docker NodeMCU Build, NodeMCU PyFlasher.

Die von Daniel und Marcel gegründete ThingPulse wird IoT-Hardware und -Software sowohl für Hersteller als auch für Verbraucher entwickeln, fördern und verkaufen. ThingPulse ist die Schnittstelle zwischen IoT-Komponenten und traditionellen Anwendungen. Mehr findet Ihr unter https://thingpulse.com/about/.

Ich wünsche an dieser Stelle einen guten Start und bin vom Erfolg schon heute überzeugt.

Grove Shield für BBC Micro:bit

Mit dem Grove Shield erschließt sich dem BBC Micro:bit Controller die ganze Familie der Grove Sensoren und Aktoren auf sehr einfache Weise.

Grove i2C Shield

Folgende Interfaces stehen nach aussen hin zur Verfügung:

DC Interfaces Micro USB x1
Grove Interface P0/P14,P1/P15,P2/P16,I2C
Grove ZERO Interface Grove ZERO x1
Logic Interface 3V3/P0/P1/P2/P8/P12/P13/GND

Mit einem Grove I2C Hub kann die Zahl der anschließbaren I2C Devices erweitert werden .

Hello World für Ledunia

Ledunia bezeichnet ein leistungsfähiges IoT Entwicklungsboard für das IoT auf Basis des bekannten ESP8266 Mikrocontrollers.

Die Installation in der Arduino IDE ist auf der Ledunia Website im Detail beschrieben. Hier ist ein einfaches Programmbeispiel im „Hello World“-Stil gezeigt, welches die erfolgreiche Inbetriebnahme zeigt.

Der deutlich grössere Speicher im Vergleich zum NodeMCU ist aus den Screenshots ersichtlich.

// Uncomment your board

#define ESP8266_LED 5 // for Ledunia
#define NodeMCU_LED D0 // for NodeMCU

#define LED ESP8266_LED // adapt it

ADC_MODE(ADC_VCC);

byte count = 0;

void setup() 
{
  pinMode(LED, OUTPUT);
  Serial.begin(115200);
  delay(4000); // waiting to start the monitor
  Serial.print("Hi there, here is "); 
  Serial.println("Ledunia"); // for Ledunia
//  Serial.println("NodeMCU"); // for NodeMCU
  Serial.print("ESP8266 Chip ID: ");
  Serial.println(ESP.getChipId());
  Serial.print("Flash Chip ID: ");
  Serial.println(ESP.getFlashChipId());
  Serial.print("Flash available [KB]: ");
  Serial.println(ESP.getFlashChipSize()/1024);
  Serial.print("Flash Chip Size [KB]: ");
  Serial.println(ESP.getFlashChipRealSize()/1024);
  Serial.print("Flash frequency [MHz]: ");
  Serial.println(ESP.getFlashChipSpeed()/1000000);
  Serial.print("Free Heap [KB]: ");
  Serial.println(ESP.getFreeHeap()/1024);
  Serial.print("VCC [mV]: ");
  Serial.println(ESP.getVcc());
}

void loop() 
{
  Serial.print(".");
  count++;
  if (count == 25)
  {
    Serial.println();
    count=0;
  }
  digitalWrite(LED, HIGH);
  delay(980);
  digitalWrite(LED, LOW);
  delay(20);
}

LeduniaTest

NodeMCU

Interesse geweckt?