Schlagwort-Archive: Cloud

Sonoff SC – Home Air Quality

Sonoff SC ist ein WiFi Luftgüte-Monitor für den Einsatz in Innenräumen.  Es werden Temperatur und Luftfeuchtigkeit, Lichtstärke, Feinstaub und Geräuschpegel erfasst. Die erfassten Daten werden direkt an die iOS/Android App EWeLink geschickt. Die Spannungsversorgung erfolgt über microUSB mit 5 V.

Sonoff SC ist „hacker-friendly“. Ein ATMega328p erfasst die Sensordaten mit Hilfe eines Arduino-Programms und ein ESP8266 dient der WiFi Kommunikation. Sonoff SC Schaltplan und Arduino Code sind im Wiki des Herstellers zu finden.

Wie die folgende Abbildung zeigt, besteht Sonoff SC aus Komponenten, die dem Maker weitgehend bekannt sein dürften.

sonoff_sc_2

Die Feinstaub-Belastung wird mit dem Sharp Dust Sensor GP2Y1010AU0F gemessen. Zur Messung von Temperatur und rel. Luftfeuchtigkeit dient der verbreitete DHT11 Sensor. Ein Elektret-Mikrofon erfasst die Umgebungsgeräusche und ein Fotowiderstand das Umgebungslicht.

Nach Installation der Android App eWeLink (für iOS gibt es eine entsprechende App) kann Sonoff Sc mit dieser App verbunden werden, die dann die erfassten Messgrößen auf dem Smartphone anzeigt.

Screenshot_20181201-143318_eWeLink

Sonoff Sc ist kein professionelles Messinstrument. Das zeigen schon die eingesetzten Low-Cost-Komponenten. Fast viel wichtiger ist es, diesen Sensor als Grundlage für eigene Experimente aufzufassen. Dazu sind alle Informationen, wie Schaltplan und Quellcode, offen gelegt und bei einem Preis von aktuell unter USD 20,- kann man da nichts falsch machen.

Website des Herstellers und Bezugsmöglichkeit: https://www.itead.cc/sonoff-sc.html
Weitere Bezugsmöglichkeiten: Aliexpress, Amazon

Advertisements

Thinger.io IoT Platform

Zahlreiche IoT Plattformen werben um die Gunst potentieller Kunden. Ich bin auf Thinger.io gestoßen, da von dieser Plattform mit dem ClimaStick auch eigene Hardware zur Erfassung von Umweltdaten angeboten wird. Hackster bietet auf dieser Basis auch gleich eine IoT Meteorological Station an.

Interessant ist diese Plattform allemal, da das Verbinden und Verwalten des eigenen IoT-Devices innerhalb weniger Minuten möglich ist.

Die folgenden Merkmale erscheinen mir besonders erwähnenswert:

  • Open Source
    Der Server kann in der eigenen Cloud (z.B. auf einem Raspberry Pi) installiert werden.
  • Flexible Hardware
    Arduino, ESP8266, ESP32, Raspberry Pi, Intel Edison – alles kann problemlos angeschlossen werden.
  • Cloud-Plattform
    Die gehostete Cloud-Infrastruktur mit einer benutzerfreundlichen Administrationskonsole ermöglicht Skalierbarkeit, Geschwindigkeit und Sicherheit.
  • Einfache Codierung
    Um ein Licht aus dem Internet einzuschalten oder einen Sensorwert zu lesen, ist eine einzige Codezeile auf der MCU erforderlich. Aber das ist nicht alles.
  • Für Maker
    Interessenten können sich für einen kostenlosen Account registrieren, um innerhalb weniger Minuten unter Nutzung der Cloud-Infrastruktur mit der Erstellung des ersten IoT-Projekts zu beginnen.

Im Bild zum Beitrag ist ein aus NodeMCU und DHT22 bestehendes IoT-Device mit der Cloud-Infrastruktur verbunden, die die erhobenen Daten visualisiert.

 

HiGrow-Sensor: Daten erfassen und versenden

Im Post HiGrow-Sensor sorgt für das Wohl der Pflanzen hatte ich auf den HiGrow-Sensor hingewiesen, der zur Überwachung der Umweltbedingungen in Pflanzennähe eingesetzt werden kann.

Im Programm HiGrowESP32MQTT.ino werden die Sensordaten des dort eingesetzten DHT11-Sensors zur Messung von Lufttemperatur und Luftfeuchte, sowie die kapazitiv gemessene Bodenfeuchte und die Helligkeit erfasst und entsprechenden Topics von MQTT-Messages zugeordnet. Zu Kontrollzwecken werden diese Daten auch seriell ausgegeben und können durch den internen Monitor der Arduino IDE verfolgt werden. Das Programm  HiGrowESP32MQTT.ino steht auf Github zum Download zur Verfügung.

HiGrow Data

Mit einem MQTT Client können die abonnierten Mitteilungen visualisiert werden.

Screenshot_20180319-140609.png

Bei meinen Test ist mir aufgefallen, dass recht häufig nach dem Programmstart der Brownout Detector getriggert wurde und einen entsprechenden Reset ausgelöst hat.

HiGrow Brounout

Verfolgt man die Diskussion (z.B. hier https://github.com/nkolban/esp32-snippets/issues/168) dann scheint ein hoher Strombedarf während der Initialisierungsphase ein (der?) Grund für das Verhalten zu sein.

Der HiGrow-Sensor weist einen Batteriehalter für eine 18650-LiPo-Batterie auf. Bei meinen Tests war die Batterie nicht bestückt. Möglicherweise puffert eine bestückte Batterie dann diesen kurzzeitigen Strombedarf hinreichend.

 

HiGrow-Sensor sorgt für das Wohl der Pflanzen

Für das optimale Gedeihen von Pflanzen sind die Bedingungen wie Temperatur, Luft- und Bodenfeuchtigkeit, Licht u.a.m. verantwortlich.

Kommerzielle Systeme von Kärcher, Gardena, Parrot u.a. ermitteln solche Größen und steuern damit beispielsweise die Bewässerung oder stellen die ermittelten Daten einer App auf dem Smartphone zur Verfügung.

Mit dem HiGrow-Sensor kann der Maker das Thema selbst in die Hand nehmen. Der HiGrow-Sensor nutzt einen DHT11 zur Messung von Lufttemperatur und -Luftfeuchte. Die Feuchte des Bodens wird kapazitiv gemessen, da diese Variante weniger störungsanfällig als die resistive Methode ist. Außerdem wird die Helligkeit erfasst. Als CPU kommt eine ESP32-Wroom von Espressif zum Einsatz, der  in der Arduino IDE programmiert werden kann. Softwareunterstützung findet man auf Github unter https://github.com/lucafabbri/HiGrow-Arduino-Esp. In den nächsten Tagen werde ich an dieser Stelle ein Programmbeispiel zeigen, welches die ermittelten Werte über MQTT an einen MQTT-Broker übermittelt und von da bezogen werden können.

Der HiGrow-Sensor wird von Banggood zum Preis von unter € 15 angeboten.

 

 

Arduino for the Cloud

This eBook describes the Arduino Yún configured for cloud applications.

Due to the combination of microcontroller and Linux device you can separate effectively real-time tasks from tasks that need network access.

Further explanations to Arduino Yún and the Arduino Yún shield as an addon for a conventional Arduino can be found in my book, Arduino for the Cloud.

Have fun with Arduino Yún!