Schlagwort-Archive: Software

Sonoff SC – Home Air Quality

Sonoff SC ist ein WiFi Luftgüte-Monitor für den Einsatz in Innenräumen.  Es werden Temperatur und Luftfeuchtigkeit, Lichtstärke, Feinstaub und Geräuschpegel erfasst. Die erfassten Daten werden direkt an die iOS/Android App EWeLink geschickt. Die Spannungsversorgung erfolgt über microUSB mit 5 V.

Sonoff SC ist „hacker-friendly“. Ein ATMega328p erfasst die Sensordaten mit Hilfe eines Arduino-Programms und ein ESP8266 dient der WiFi Kommunikation. Sonoff SC Schaltplan und Arduino Code sind im Wiki des Herstellers zu finden.

Wie die folgende Abbildung zeigt, besteht Sonoff SC aus Komponenten, die dem Maker weitgehend bekannt sein dürften.

sonoff_sc_2

Die Feinstaub-Belastung wird mit dem Sharp Dust Sensor GP2Y1010AU0F gemessen. Zur Messung von Temperatur und rel. Luftfeuchtigkeit dient der verbreitete DHT11 Sensor. Ein Elektret-Mikrofon erfasst die Umgebungsgeräusche und ein Fotowiderstand das Umgebungslicht.

Nach Installation der Android App eWeLink (für iOS gibt es eine entsprechende App) kann Sonoff Sc mit dieser App verbunden werden, die dann die erfassten Messgrößen auf dem Smartphone anzeigt.

Screenshot_20181201-143318_eWeLink

Sonoff Sc ist kein professionelles Messinstrument. Das zeigen schon die eingesetzten Low-Cost-Komponenten. Fast viel wichtiger ist es, diesen Sensor als Grundlage für eigene Experimente aufzufassen. Dazu sind alle Informationen, wie Schaltplan und Quellcode, offen gelegt und bei einem Preis von aktuell unter USD 20,- kann man da nichts falsch machen.

Website des Herstellers und Bezugsmöglichkeit: https://www.itead.cc/sonoff-sc.html
Weitere Bezugsmöglichkeiten: Aliexpress, Amazon

Advertisements

Thinger.io IoT Platform

Zahlreiche IoT Plattformen werben um die Gunst potentieller Kunden. Ich bin auf Thinger.io gestoßen, da von dieser Plattform mit dem ClimaStick auch eigene Hardware zur Erfassung von Umweltdaten angeboten wird. Hackster bietet auf dieser Basis auch gleich eine IoT Meteorological Station an.

Interessant ist diese Plattform allemal, da das Verbinden und Verwalten des eigenen IoT-Devices innerhalb weniger Minuten möglich ist.

Die folgenden Merkmale erscheinen mir besonders erwähnenswert:

  • Open Source
    Der Server kann in der eigenen Cloud (z.B. auf einem Raspberry Pi) installiert werden.
  • Flexible Hardware
    Arduino, ESP8266, ESP32, Raspberry Pi, Intel Edison – alles kann problemlos angeschlossen werden.
  • Cloud-Plattform
    Die gehostete Cloud-Infrastruktur mit einer benutzerfreundlichen Administrationskonsole ermöglicht Skalierbarkeit, Geschwindigkeit und Sicherheit.
  • Einfache Codierung
    Um ein Licht aus dem Internet einzuschalten oder einen Sensorwert zu lesen, ist eine einzige Codezeile auf der MCU erforderlich. Aber das ist nicht alles.
  • Für Maker
    Interessenten können sich für einen kostenlosen Account registrieren, um innerhalb weniger Minuten unter Nutzung der Cloud-Infrastruktur mit der Erstellung des ersten IoT-Projekts zu beginnen.

Im Bild zum Beitrag ist ein aus NodeMCU und DHT22 bestehendes IoT-Device mit der Cloud-Infrastruktur verbunden, die die erhobenen Daten visualisiert.

 

Kerlink Wirnet iFemtoCell – Kleines LoRaWAN Indoor Gateway mit großer Leistung

Der Ausbau landesweit erreichbarer Funknetze auf LoRa-Basis ist in einigen Ländern, wie der Schweiz (Swisscom), den Niederlanden (KPN) und Süd-Korea (SK Telecom), bereits erfolgreich umgesetzt. Andere Service Provider stellen ebenfalls die erforderliche Infrastruktur zur Verfügung. Neben kommerziellen Angeboten gibt es auch Services, die kostenfrei genutzt werden können.

Ein LoRaWAN-Gateway verbindet die über Funk kommunizierenden LoRaWAN-Nodes über das Internet mit einem LoRaWAN-Server. Weil hier in erster Linie Stabilität und Sicherheit gefordert sind, betrachte ich für diesen Einsatz nur kommerzielle LoRaWAN-Gateways.

Im Smartmakers Newsletter gehe ich speziell auf das Wirnet iFemtoCell LoRaWAN Gateway ein, welches perfekt für die Erweiterung in Gebäuden (zusätzliche Abdeckung in Gebäuden zur Verdichtung öffentlicher Verfügbarkeit und Kontinuität des Dienstes) oder für die private Abdeckung von Standorten geeignet ist, die kontinuierliche Konnektivität für ihre IoT-Anwendungen erfordern.

Betrachtet werden die folgenden Schwerpunkte

  • Unboxing
  • Inbetriebnahme
  • SSH-Verbindung
  • Firmware Update
  • Integration ins The Things Network (TTN)
  • Integration ins LORIOT-Netzwerk
  • Programmierung von Anwendungen auf dem Gateway

 

 

Beacons im Physical Web

Allgemeine Übersicht

Im Physical Web werden Objekten diese Objekte kennzeichnende URLs (= Uniform Resource Locator) zugeordnet. Das bedeutet nichts anderes, als das unter der betreffenden URL im Allgemeinen eine Website zu finden ist, die objektrelevante Daten zur Verfügung stellt.

Die zu erkennenden URLs werden von Objekten in der Umgebung gesendet, so dass dadurch die Objektbezogenheit sichergestellt ist. Jedes Objekt kann mit einem Bluetooth Low Energy (BLE) Beacon, einem leistungsstarken, batteriebetriebenen Gerät, versehen werden, das die betreffenden Inhalte über Bluetooth sendet.

Beacons, die die Eddystone-Protokollspezifikation unterstützen, können URLs und weitere Formate übertragen. Dienste auf dem Mobilgerät des Nutzers, wie Google Chrome oder Nearby Messages, können nach der Übergabe dieser URLs nach diesen suchen und diese anzeigen.

Das Physical Web sorgt unter anderem dafür, dass Nutzer nicht ständig neue Apps auf ihren Mobilgeräten installieren müssen, sondern die Nachrichten auf einer einheitlichen Oberfläche betrachten können. Es lässt sich in nahezu allen Fällen einsetzen, in denen Nutzer an Informationen über ihre Umgebung interessiert sind oder in denen eine Interaktion zwischen ihnen und smarten Objekten nötig ist.

Ausgangspunkt für die Entwicklung der Beacon-Technologie war im Jahr 2013 die Fa. Estimote mit dem ersten BLE Beacon, gefolgt von Apple, die ihre Implementierung iBeacon benannt haben. Diese Beacons senden eine BLE Advertising Message aus, deren Inhalt von einer Empfänger-App dekodiert werden und davon abgeleitet Aktionen auslösen kann

Google ist im Jahr 2015 mit seinem Physical Web Projekt in diese Thematik eingestiegen und erweitert die von den Beacons gesendeten Informationen, so dass zur Aufbereitung der gesendeten Informationen nicht zwangsläufig eine zugeordnete App erforderlich ist.

Im Alltag begegnen uns oft Situationen in denen der Einsatz von Beacons sehr von Vorteil ist.

Nicht jeder Nutzer des öffentlichen Personen-Nahverkehrs kann Informationen zur aktuellen Situation seiner gewünschten Verbindung über dynamische Fahrgastinformations-Anzeiger beziehen. In den Innenstädten werden diese zunehmend eingesetzt.

1024px-Dresden_Hauptbahnhof_-_Haltestelle_der_Straßenbahn_(7033568319)

Autor: IngolfBLN

Auf dem Land werden wohl noch weitere Zeit die traditionellen Haltestellenschilder zu sehen sein.

Haltestellenschild_Jungfernstieg_retouched

Autor: MissyWegner

Bein einem solchen Haltestellenschild, was auch im innerstädtischen Bereich durchaus noch gesehen wird, kann ein installierter Beacon die gewünschten Informationen beispielsweise über eine dynamisch aktualisierte Website mit Fahrplaninformationen bieten.

Neben diesen Anwendungen haben die Marketing-Strategen die Mächtigkeit dieser Beacon-Lösungen schon lange erkannt. So kann beispielsweise beim Betreten eines Supermarktes gezielt auf Sonderangebote hingewiesen und das Kaufverhalten beeinflusst werden.

Nach diesen eher anwendungsorientierten Bemerkungen kann sich jeder selbst Gedanken über den Einsatz von Beacons machen.

Kommerzielle Beacons

In den kommerziellen Angeboten findet man zahlreiche Beacons, bei denen leider nicht immer klar hervorgeht, ob sie auch das Eddystone Profile unterstützen. Ich habe mit zwei Beacons der chinesischen Fa. AprilBrother experimentiert.

CardBeacon

Kern des CardBeacons ist ein DA14580 SoC der Fa. Dialog – ein Cortex-M0 mit einem BLE Core. Es wird die zumindest doppelte Batterielebensdauer gegenüber den als Standard geltenden Nordic nrf51822 Chips versprochen und soll mit den Default-Einstellungen drei Jahre betragen. Eine Batterie CR3032 (500mAh) ist im CardBeacon integriert.

CardBeacon ist iBeacon-zertifiziert und unterstützt damit alle iBeacon-Funktionen. UUID, Major, Minor und das Advertising Intervall sind konfigurierbar.

cardbeacon1

CardBeacon im Scheckkartenformat

Dieser CardBeacon hat die Grundfläche einer Kreditkarte. Die Dicke der Karte beträgt allerdings 5.8 mm. Hier sind die technischen Daten des CardBeacons nachzulesen.

AprilBeacon 202

Der AprilBeacon 202 kann wie bereits der CardBeacon im iBeacon-, Eddystone-UID- oder Eddystone-URL-Mode betrieben werden.

AprilBeacon

AprilBeacon mit dem Abmessungen 40 mm x 40 mm x 15 mm

AprilBeacon App

Die AprilBeacon App ist ein herstellerspezifisches Tool zur Konfiguration der von diesem Hersteller angebotenen Beacons. Auf der Website des Herstellers findet man die Links zu Apples App Store und zu Googles Playstore.

Beacon Tools

Zur Inbetriebnahme bzw. zur Konfiguration von Beacons bedarf es in der Regel spezieller Tools, die meist herstellerspezifisch sind. Die AprilBaecon App war ein solches Tool.

Ansonsten ist es hilfreich mindestens einen BLE Scanner und die Physical Web App auf seinem Smartphone zu installieren, die für Android in Google’s Playstore zu finden sind.

In Googles Playstore findet man ausserdem zahlreiche BLE Scanner. Ich habe die Tools von Bluepixel Technology und Nordic Semiconductor ausgesucht und verwendet. Mit der Physical Web App kann man schließlich die übertragenen URL einfach sichtbar machen.

BLE Implementierungen

Es gibt derzeit ein recht breites Spektrum an Hardware, bei der bereits ein BLE Modul installiert ist. Das Spektrum reicht dabei von einfachen Mikrocontrollern bis hin zu leistungsfähigen Linux-Devices. Zu nennen sind u.a. BBC micro:bit & Calliope mini, pycom WiPy und Linux Devices , wie Raspberry Pi 3, Raspberry Pi Zero W und C.H.I.P.

Dieser Abschnitt zeigt für BBC micro:bit & Calliope mini die erforderliche Software-Installation, um einen Eddystone-URL Beacon zu erstellen. Das Ergebnis ist für alle Implementierungen identisch – eine über BLE übertragene URL, die von einem Smartphone, Tablet oder anderem BLE-tauglichen Equipment empfangen und ausgewertet werden kann.

Seit einem Jahr ist der BBC micro:bit genannte Mikrocontroller der BBC verfügbar und unter Schülern und Lehrer in Großbritannien recht verbreitet. In Deutschland hat sich die gemeinnützigen Calliope GmbH das Ziel gesteckt, mit dem Calliope mini einen für die Anforderungen der Grundschule geeigneten Mikrocontroller bereit zu stellen, wobei sich dieser am BBC micro:bit orientiert.

Beide Mikrocontroller-Boards sind technisch vergleichbar ausgestattet und weisen als Kern einen nRF51822 Mikrocontroller von Nordic Semiconductors auf.

Preise und Bezugsmöglichkeiten sind in der nachfolgenden Tabelle gelistet.

Mikrocontroller BBC micro:bit Calliope mini
Preis EUR 16,85 EUR 35,00
Lieferant http://www.exp-tech.de

Zur Programmierung der beiden Mikrocontroller-Boards stehen ein JavaScript Blocks Editor und MicroPython zur Verfügung. Will man BLE nutzen, dann steht MicroPython leider nicht zur Verfügung da der BLE-Stack zu viel RAM benötigt.

Unser micro:bit (oder Calliope mini) Beacon soll nun eine URL aussenden, die auf die verwendete Programmierumgebung, den Java Script Blocks Editor, verweist. Die URL lautet im Original https://makecode.microbit.org/ und verkürzt https://goo.gl/8Hcntr.

Die folgende Abbildung zeigt die vom Java Script Blocks Editor verwendeten Blöcke.

microbit - Eddystone URL senden

Um BLE zur Verfügung zu haben, muss über Add Package zu Beginn noch das BLE Paket nachinstalliert werden.

Da hier mit einer sicheren Webseite gearbeitet wurde, ist die versendete URL auch als (weitere) Nearby Message sichtbar und kann vom Smartphone direkt aufgerufen werden.

Nearby4

 

AVR Timer Interrupts Calculator

Arduino_Logo.svg
Timers for

  • ATmega328P used in Arduino Uno & Arduino Pro Mini
  • ATmega2560 used in Arduino Mega 2560 and
  • ATtiny85

are calculated in CTC mode. Select requested frequency, MCU and timer. Click Calculate. Copy result into the clipboard. Paste code into Arduino IDE. Ready. Click here for this easy to use tool.

It’s a good addition to my book Arduino Interrupts – Speed up your Arduino to be responsive.